Thermal scaling in the three-dimensional Ising model
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Nuclear multifragmentation is a process occurring at
the limits of nuclear excitation, and, as such, portrays
an appropriate richness and complexity. While the fun-
damental problem of dynamics vs. statistics is still de-
bated, it appears ever more clearly that many ther-
mal/statistical features underlie the empirical body of
data. In particular, “thermal scaling” has been seen in
a large set of data [1-3]. The three-dimensional Ising
model was chosen to study thermal scaling in multifrag-
mentation because it has a simple Hamiltonian and lends
itself to a thermal treatment with nontrivial results [4].

Thermal scaling 1s the linear dependence of the loga-
rithm of the one-fragment probability with 1/7" (an Ar-
rhenius plot). Tt indicates that the emission probability
for fragment type ¢ has a Boltzmann dependence

pi = poexp(—B;/T) (1)

where B; is a barrier corresponding to the emission pro-
cess. As shown in Fig. 1, this is indeed the case over a
wide range of temperatures and fragment sizes. While we
have shown distributions for clusters up to size A = 100,
the trend continues for larger clusters, however statistics
decrease significantly as the size of the cluster increases.
This linearity extends over more than four or five orders
of magnitude. Tt rigorously confirms the form of Eq. (1)
and signifies the independent thermal formation of frag-
ments controlled by a single size-dependent barrier.
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FIG. 1. Cluster distributions are shown as a function of di-
mensionless temperature (Tscatea = ksT'/J). Statistical error
bars are shown when they exceed the size of the data point.

Thermal scaling can be found in Fisher’s formula for
the cluster abundance as a function of cluster size and of
temperature [5,6]. In the coexistence region, the chemical

potentials of the liquid and gas phases are equal and the
Fisher’s model predicts the cluster distribution:

na(T) = quA™" exp(—coA%¢/T) (2)

with e = (T, = T')/T., co and o are determined from the
extracted barriers and 7 a critical exponent related to
the topology of the system. Therefore, a graph of the
scaled cluster distributions (na(7T)A7/qo) as a function
of eA? /T should make the distributions of all cluster sizes
collapse onto a single curve.

The nearly perfect collapse (see Fig. 2) below the crit-
ical temperature extends over six orders of magnitude
for the broadest range of cluster sizes and it is perfectly
linear. Therefore the three-dimensional Ising model and
fluids belong to the same class of universality and can
be described by Fisher’s droplet model. The Ising clus-
ters constructed here can be properly thought of as “va-
por” in equilibrium with the “liquid” percolating cluster.
The fact that both the three-dimensional Ising model and
the experimental nuclear multifragmentation data obey
the same scaling predicted by Fisher’s droplet model in-
dicates that nuclear multifragmentation can indeed be
identified as the clustering in a nuclear vapor in equilib-
rium with the nuclear liquid.
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FIG. 2. Scaling behavior of cluster distributions.
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